317 research outputs found

    Hybrid simulation: Historical lessons, present challenges and futures

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

    ERCC1 expression and RAD51B activity correlate with cell cycle response to platinum drug treatment not DNA repair

    Get PDF
    Background: The H69CIS200 and H69OX400 cell lines are novel models of low-level platinum-drug resistance. Resistance was not associated with increased cellular glutathione or decreased accumulation of platinum, rather the resistant cell lines have a cell cycle alteration allowing them to rapidly proliferate post drug treatment. Results: A decrease in ERCC1 protein expression and an increase in RAD51B foci activity was observed in association with the platinum induced cell cycle arrest but these changes did not correlate with resistance or altered DNA repair capacity. The H69 cells and resistant cell lines have a p53 mutation and consequently decrease expression of p21 in response to platinum drug treatment, promoting progression of the cell cycle instead of increasing p21 to maintain the arrest. Conclusion: Decreased ERCC1 protein and increased RAD51B foci may in part be mediating the maintenance of the cell cycle arrest in the sensitive cells. Resistance in the H69CIS200 and H69OX400 cells may therefore involve the regulation of ERCC1 and RAD51B independent of their roles in DNA repair. The novel mechanism of platinum resistance in the H69CIS200 and H69OX400 cells demonstrates the multifactorial nature of platinum resistance which can occur independently of alterations in DNA repair capacity and changes in ERCC1

    Automated Quality Assessment of Space-Continuous Models for Pedestrian Dynamics

    Full text link
    In this work we propose a methodology for assessment of pedestrian models continuous in space. With respect to the Kolmogorov-Smirnov distance between two data clouds, representing for instance simulated and the corresponding empirical data, we calculate an evaluation factor between zero and one. Based on the value of the herein developed factor, we make a statement about the goodness of the model under evaluation. Moreover this process can be repeated in an automatic way in order to maximize the above mentioned factor and hence determine the optimal set of model parameters.Comment: 8 pages, 3 figures, accepted at the Proceedings of Traffic and Granular Flow '1

    Data quality problems in discrete event simulation of manufacturing operations

    Get PDF
    High-quality input data are a necessity for successful discrete event simulation (DES) applications, and there are available methodologies for data collection in DES projects. However, in contrast to standalone projects, using DES as a daily manufacturing engineering tool requires high-quality production data to be constantly available. In fact, there has been a major shift in the application of DES in manufacturing from production system design to daily operations, accompanied by a stream of research on automation of input data management and interoperability between data sources and simulation models. Unfortunately, this research stream rests on the assumption that the collected data are already of high quality,and there is a lack of in-depth understanding of simulation data quality problems from a practitioners’ perspective.Therefore, a multiple-case study within the automotive industry was used to provide empirical descriptions of simulation data quality problems, data production processes, and relations between these processes and simulation data quality problems. These empirical descriptions are necessary to extend the present knowledge on data quality in DES in a practical real-world manufacturing context, which is a prerequisite for developing practical solutions for solving data quality problems such as limited accessibility, lack of data on minor stoppages, and data sources not being designed for simulation. Further, the empirical and theoretical knowledge gained throughout the study was used to propose a set of practical guidelines that can support manufacturing companies in improving data quality in DES

    Effect of salinity on the biosynthesis of n-3 long-chain polyunsaturated fatty acids in silverside Chirostoma estor

    Get PDF
    The genus Chirostoma (silversides) belongs to the family Atherinopsidae, which contains around 150 species, most of which are marine. However, Mexican silverside (Chirostoma estor) is one of the few representatives of freshwater atherinopsids and is only found in some lakes of the Mexican Central Plateau. However, studies have shown that C. estor has improved survival, growth and development when cultured in water conditions with increased salinity. In addition, C. estor displays an unusual fatty acid composition for a freshwater fish with high docosahexaenoic acid (DHA) : eicosapentaenoic acid (EPA) ratios. Freshwater and marine fish species display very different essential fatty acid metabolism and requirements and so the present study investigated long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis to determine the capacity of C. estor for endogenous production of EPA and DHA, and the effect that salinity has on these pathways. Briefly, C. estor were maintained at three salinities (0, 5 and 15 ppt) and the metabolism of 14C-labelled 18:3n-3 determined in isolated hepatocyte and enterocyte cells. The results showed that C. estor has the capacity for endogenous biosynthesis of LC-PUFA from 18-carbon fatty acid precursors, but that the pathway was essentially only active in saline conditions with virtually no activity in cells isolated from fish grown in freshwater. The activity of the LCPUFA biosynthesis pathway was also higher in cells isolated from fish at 15 ppt compared to fish at 5 ppt, The pathway was around 5-fold higher in hepatocytes compared to enterocytes, although the majority of 18:3n-3 was converted to 18:4n-3 and 20:4n-3 in hepatocytes whereas the proportions of 18:3n-3 converted to EPA and DHA were higher in enterocytes. The data were consistent with the hypothesis that conversion of EPA to DHA could contribute, at least in part, to the generally high DHA:EPA ratios observed in the tissue lipids of C. estor

    Large Scale Structure of the Universe

    Full text link
    Galaxies are not uniformly distributed in space. On large scales the Universe displays coherent structure, with galaxies residing in groups and clusters on scales of ~1-3 Mpc/h, which lie at the intersections of long filaments of galaxies that are >10 Mpc/h in length. Vast regions of relatively empty space, known as voids, contain very few galaxies and span the volume in between these structures. This observed large scale structure depends both on cosmological parameters and on the formation and evolution of galaxies. Using the two-point correlation function, one can trace the dependence of large scale structure on galaxy properties such as luminosity, color, stellar mass, and track its evolution with redshift. Comparison of the observed galaxy clustering signatures with dark matter simulations allows one to model and understand the clustering of galaxies and their formation and evolution within their parent dark matter halos. Clustering measurements can determine the parent dark matter halo mass of a given galaxy population, connect observed galaxy populations at different epochs, and constrain cosmological parameters and galaxy evolution models. This chapter describes the methods used to measure the two-point correlation function in both redshift and real space, presents the current results of how the clustering amplitude depends on various galaxy properties, and discusses quantitative measurements of the structures of voids and filaments. The interpretation of these results with current theoretical models is also presented.Comment: Invited contribution to be published in Vol. 8 of book "Planets, Stars, and Stellar Systems", Springer, series editor T. D. Oswalt, volume editor W. C. Keel, v2 includes additional references, updated to match published versio

    Evaluation of a chemoresponse assay as a predictive marker in the treatment of recurrent ovarian cancer: Further analysis of a prospective study

    Get PDF
    BACKGROUND: Recently, a prospective study reported improved clinical outcomes for recurrent ovarian cancer patients treated with chemotherapies indicated to be sensitive by a chemoresponse assay, compared with those patients treated with non-sensitive therapies, thereby demonstrating the assay's prognostic properties. Due to cross-drug response over different treatments and possible association of in vitro chemosensitivity of a tumour with its inherent biology, further analysis is required to ascertain whether the assay performs as a predictive marker as well. METHODS: Women with persistent or recurrent epithelial ovarian cancer (n=262) were empirically treated with one of 15 therapies, blinded to assay results. Each patient's tumour was assayed for responsiveness to the 15 therapies. The assay's ability to predict progression-free survival (PFS) was assessed by comparing the association when the assayed therapy matches the administered therapy (match) with the association when the assayed therapy is randomly selected, not necessarily matching the administered therapy (mismatch). RESULTS: Patients treated with assay-sensitive therapies had improved PFS vs patients treated with non-sensitive therapies, with the assay result for match significantly associated with PFS (hazard ratio (HR)=0.67, 95% confidence interval (CI)=0.50–0.91, P=0.009). On the basis of 3000 simulations, the mean HR for mismatch was 0.81 (95% range=0.66–0.99), with 3.4% of HRs less than 0.67, indicating that HR for match is lower than for mismatch. While 47% of tumours were non-sensitive to all assayed therapies and 9% were sensitive to all, 44% displayed heterogeneity in assay results. Improved outcome was associated with the administration of an assay-sensitive therapy, regardless of homogeneous or heterogeneous assay responses across all of the assayed therapies. CONCLUSIONS: These analyses provide supportive evidence that this chemoresponse assay is a predictive marker, demonstrating its ability to discern specific therapies that are likely to be more effective among multiple alternatives

    How the oxygen tolerance of a [NiFe]-hydrogenase depends on quaternary structure

    Get PDF
    ‘Oxygen-tolerant’ [NiFe]-hydrogenases can catalyze H(2) oxidation under aerobic conditions, avoiding oxygenation and destruction of the active site. In one mechanism accounting for this special property, membrane-bound [NiFe]-hydrogenases accommodate a pool of electrons that allows an O(2) molecule attacking the active site to be converted rapidly to harmless water. An important advantage may stem from having a dimeric or higher-order quaternary structure in which the electron-transfer relay chain of one partner is electronically coupled to that in the other. Hydrogenase-1 from E. coli has a dimeric structure in which the distal [4Fe-4S] clusters in each monomer are located approximately 12 Å apart, a distance conducive to fast electron tunneling. Such an arrangement can ensure that electrons from H(2) oxidation released at the active site of one partner are immediately transferred to its counterpart when an O(2) molecule attacks. This paper addresses the role of long-range, inter-domain electron transfer in the mechanism of O(2)-tolerance by comparing the properties of monomeric and dimeric forms of Hydrogenase-1. The results reveal a further interesting advantage that quaternary structure affords to proteins

    Investigation of highly unsaturated fatty acid metabolism in the Asian sea bass, Lates calcarifer

    Get PDF
    Lates calcarifer, commonly known as the Asian sea bass or barramundi, is an interesting species that has great aquaculture potential in Asia including Malaysia and also Australia. We have investigated essential fatty acid metabolism in this species, focusing on the endogenous highly unsaturated fatty acid (HUFA) synthesis pathway using both biochemical and molecular biological approaches. Fatty acyl desaturase (Fad) and elongase (Elovl) cDNAs were cloned and functional characterization identified them as ∆6 Fad and Elovl5 elongase enzymes, respectively. The ∆6 Fad was equally active towards 18:3n-3 and 18:2n-6, and Elovl5 exhibited elongation activity for C18-20 and C20-22 elongation and a trace of C22-24 activity. The tissue profile of gene expression for ∆6 fad and elovl5 genes, showed brain to have the highest expression of both genes compared to all other tissues. The results of tissue fatty acid analysis showed that the brain contained more docosahexaenoic acid (DHA, 22:6n-3) than flesh, liver and intestine. The HUFA synthesis activity in isolated hepatocytes and enterocytes using [1-14C]18:3n-3 as substrate was very low with the only desaturated product detected being 18:4n-3. These findings indicate that L. calcarifer display an essential fatty acid pattern similar to other marine fish in that they appear unable to synthesize HUFA from C18 substrates. High expression of ∆6 fad and elovl5 genes in brain may indicate a role for these enzymes in maintaining high DHA levels in neural tissues through conversion of 20:5n-3

    Nutritional and environmental regulation of the synthesis of highly unsaturated fatty acids and of fatty-acid oxidation in Atlantic salmon (Salmo salar L.) enterocytes and hepatocytes

    Get PDF
    The aim was to determine if highly unsaturated fatty acid (HUFA) synthesis and fatty acid oxidation in Atlantic salmon (Salmo salar L.) intestine was under environmental and/or seasonal regulation. Triplicate groups of salmon were grown through a full two-year cycle on two diets containing either fish oil (FO), or a diet with 75% of the FO replaced by a vegetable oil (VO) blend containing rapeseed, palm and linseed oils. At key points in the life cycle, fatty acyl desaturation/elongation (HUFA synthesis) and oxidation activities were determined in enterocytes and hepatocytes using [1-14C]18:3n-3 as substrate. As observed previously, HUFA synthesis in hepatocytes showed peak activity at seawater transfer and declined thereafter, with activity consistently greater in fish fed the VO diet. In fish fed FO, HUFA synthesis in enterocytes in the freshwater stage was at a similar level to that in hepatocytes. However, HUFA synthesis in enterocytes increased rapidly after seawater transfer and remained high for some months after transfer before decreasing to levels that were again similar to those observed in hepatocytes. Generally, enterocyte HUFA synthesis was higher in fish fed the VO diet compared to the FO diet. Oxidation of [1-14C]18:3n-3 in hepatocytes from fish fed FO tended to decrease during the freshwater phase but then increased steeply, peaking just after transfer before decreasing during the remaining seawater phase. At the peak in oxidation activity around seawater transfer, activity was significantly lower in fish fed VO compared to fish fed FO. In enterocytes, oxidation of [1-14C]18:3 in fish fed FO showed a peak in activity just prior to seawater transfer. In fish fed VO, other than high activity at 9 months, the pattern was similar to that obtained in enterocytes from fish fed FO with a high activity around seawater transfer and declining activity in seawater. In conclusion, fatty acid metabolism in intestinal cells appeared to be under dual nutritional and environmental or seasonal regulation. The temporal patterns for fatty acid oxidation were generally similar in the two cell types, but HUFA synthesis in enterocytes peaked over the summer seawater phase rather than at transfer, as with hepatocytes, suggesting possibly different regulatory cues
    corecore